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Abstract
The spectral theory of quantum graphs is related via an exact trace formula
to the spectrum of the lengths of periodic orbits (cycles) on the graphs. The
latter is a degenerate spectrum, and understanding its structure (i.e., finding
how many different lengths exist for periodic orbits with a given period and
the average number of periodic orbits with the same length) is necessary for
the systematic study of spectral fluctuations using the trace formula. This is a
combinatorial problem which we solve exactly for complete (fully connected)
graphs with arbitrary number of vertices.

PACS numbers: 05.45.Mt, 05.40.−a, 03.65.Sq

1. Introduction

The interest in the spectral properties of the Schrödinger operator on metric graphs (known also
as ‘quantum graphs’) increased dramatically after it was found that quantum graphs provide
an excellent paradigm for the study of spectral fluctuations in quantum chaotic systems
[2, 3]. The spectral density of quantum graphs can be expressed as an exact trace formula
[1, 2] in terms of the spectrum of the lengths of its periodic orbits (PO) (also called cycles),
which is analogous to the asymptotic semi-classical trace formula [4]. Moreover, the quantum
graphs possess a Liouvillian analog, which under some well-understood conditions is ergodic.
At the same time, extensive numerical simulations and tests can be performed with a rather
modest computational effort allowing a detailed comparison of the spectral statistics with the
prediction of random matrix theory, and study the systematic deviation from it. The simple
finite graphs are essentially one-dimensional (albeit not simply connected) systems. They
display spectral complexity under one important condition: the lengths of the bonds must be
rationally independent.

The main tool in the theoretical discussion of the spectral statistics of quantum graphs is
the above-mentioned trace formula. It can be written explicitly as

d(k) =
∞∑

j=1

δ(k − kj ) = L
π

+
∑

n

∑
p∈Pn

A(n)
p eiklp , (1)
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where Ej = k2
j are the eigenvalues of the Schrödinger operator. The kj ’s form the wave-

number spectrum. L is the total bond length, i.e., for a graph with B bonds, of lengths Lb,
it is given by L = ∑B

b=1 Lb. Pn denotes the set of PO’s of period n. Each periodic orbit
contributes a term which consists of a ‘transition amplitude’ A(n)

p , and a unimodular factor
with a phase which is determined by the length of the corresponding n-bond PO

lp =
B∑

b=1

qbLb, qb ∈ {0, 1, 2, . . .} and
B∑

b=1

qb = n. (2)

The length spectrum is highly degenerate. Each degeneracy class contains all orbits which
traverse the same bonds the same number of times, but not in the same order (up to
cyclic permutations) and only these (since the bond lengths Lb are rationally independent).
That is, a degeneracy class of n-bond PO’s consists of orbits which have the same code
q(n) = (q1, . . . , qB), with

∑
b qb = n. Not every set of nonnegative integers {qb} the sum of

which is n represents a degeneracy class—the graph connectivity and the periodicity restrict
the possible codes. The trace formula can be written as

d(k) = L
π

+
∑

n

∑
q(n)


 ∑

p∈q(n)

A(n)
p


 eikl

(n)
q , (3)

where the contributions of the different orbits in the degeneracy class q(n) were lumped together
to the sum in the square brackets, all having the same phase factor.

There are two prominent examples where a detailed information about the degeneracy
classes is needed. The first example emerges in attempts to understand the conditions under
which the spectral fluctuation of a quantum graph follows the predictions of random matrix
theory. A standard tool is the computation of the spectral autocorrelation function

R(ξ ; k) = 1

2�

∫ k+�

k−�

d̃

(
x +

ξ

2

)
d̃

(
x − ξ

2

)
dx, (4)

where d̃(k) = d(k) − L
π

is the fluctuating part of the spectral density and the domain of
integration [k − �, k + �] is arbitrarily large. Substituting the explicit expression (3) into (4)
one sees that the autocorrelation function depends on the squares of the individual contributions
of the degeneracy classes (the terms in the square brackets in (3)).

The second example is encountered in the context of ‘hearing the shape of a graph’, that is,
in attempts to reconstruct the connectivity and the length spectrum from the energy eigenvalue
spectrum of the quantum graph [9]. The main tool is again the trace formula (3) or rather its
Fourier transform d̂(l) = ∫

dk d(k) exp(ikl). d̂(l) is a distribution supported on the length
spectrum, with weights which can be read off from (3). The length spectrum (its composition
and weights) is therefore useful to obtain the information about d̂(l) and in turn also about the
connectivity of the graph.

The leading asymptotic (for large n) contribution to the number of degeneracy classes in
a general connected graph was obtained by Berkolaiko [5]. The number of degeneracy classes
and the number of PO’s in each class were obtained by Tanner [6] for binary graphs up to
order 6.

In this paper we present an exact expression for the number of classes for fully connected
(complete) graphs of any order.

We start by defining precisely graphs, PO’s and their degeneracy classes. We then compute
the number of degeneracy classes for general fully connected graphs, the total number of n-
bond PO’s, and obtain the mean degeneracy of the classes as the ratio between the two. Finally,
we present numerical results and interpret them.



Degeneracies in the length spectra of metric graphs 10011

4 3

5 2

1

1→2→4→1→5→4→1

1→2→4→1→4→5→1

2

4

5
1

G C6 → → → → → →
→ → → → → →
→ → → → → →
→ → → → → →
→ → → → → →
→ → → → → →

(a)

(d)

(b) (c)

Figure 1. The fully connected graph K5 and one of its degeneracy classes.

2. Graphs, periodic orbits, degeneracy classes

A graph, G, of order V is a set of V numbered vertices, some of which are connected by a
bond (not more than one bond between two vertices, no bond connects a vertex to itself). The
number of bonds connected to a vertex is the vertex valency. The connectivity matrix of G is
defined by

Cij (G) =
{

1 if i and j are connected
0 otherwise.

(5)

A fully connected graph KV is a graph where each vertex is connected by a single bond
to any other vertex (besides itself): Ci,j = 1 − δi,j , i, j ∈ G.

A periodic orbit (PO) on a graph G is a sequence of vertices, [v1, v2, . . . , vn] with
Cvi,vi+1 = 1 and v1 = vn. PO’s that can be obtained from one another by a cyclic permutation
of their vertices will be considered identical.

Consider an integer set {qb}b=(i,j)=(j,i), i, j ∈ G with
∑

qb = n. A degeneracy class of
n-bond periodic orbits is a set of all the n-bond PO’s each of which passes exactly qb times
over the bond b. All these PO’s are of the same length and since the bond lengths are rationally
independent all PO’s of the same length belong to one class. The degeneracy of a class is
the number of distinct PO’s in it. Figure 1(a) shows the fully connected graph G = K5.

Figure 1(b) shows the degeneracy class (q(1,2) = q(2,4) = q(4,5) = q(5,1) = 1, q(1,4) = 2).

Figure 1(c) lists all the PO’s in this class and figure 1(d) shows two of them explicitly.
Let Nc(n,G) be the number of classes of n-bond PO’s in G and Np(n,G) the total number

of n-bond PO’s in G. The mean degeneracy of n-bond PO in G,Dn(G), is defined by

Dn(G) ≡ Np(n,G)

Nc(n,G)
. (6)

In the next section we shall provide exact expressions for Nc(n,KV ),Np(n,KV ) and
Dn(KV ), that is, for the number of classes and PO’s, and the mean degeneracy of fully
connected simple graphs.
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(a)

(b)

(c)

Figure 2. 4-bond degeneracy classes of the fully connected graph K4

3. The number of classes of n-bond periodic orbits on a fully connected graph with V
vertices

Since a fully-connected graph is determined uniquely by specifying V, we may use more
compact notations, replacing Dn(KV ) → D(n, V ) and so on. We start by obtaining Nc(n, V ).

Let v � V and Nc,v(n, v) be the number of n-bond degeneracy classes in Kv which
contain PO’s that passes through all the v vertices. Note that Nc,v(n, v) � Nc(n, v) because
not all PO’s pass through all the vertices. More precisely,

Nc(n, V ) =
V∑

v=1

(
V

v

)
Nc,v(n, v) (7)

that is, the number of classes is a sum of the number of classes with PO’s that use exactly v

vertices. The factor
(
V

v

)
accounts for the possibilities of choosing these v vertices. All such

choices have identical contribution since KV is fully connected.
For example consider n = V = 4. Figures 2(a)–(c) show all the 4-bond classes of

K4 grouped according to the sum in equation (7). There are
(4

2

) = 6 ways for choosing
2 vertices (see figure 2(a)),

(4
3

) = 4 for choosing 3 vertices (corresponding to each line in
figure 2(b)),

(4
4

) = 1 ways for choosing 4 vertices (figure 2(c)). These figures show that
Nc,1(4, 1) = 0, Nc,2(4, 2) = 1, Nc,3(4, 3) = 3, Nc,4(4, 4) = 4.

The reason why we have expressed Nc(n, V ) in equation (7) in terms of Nc,v(n, v) is
because the latter was calculated by Read in [10]. For completeness, a concise derivation
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along the lines of that work is given in appendix A. The result derived in appendix A is that
Nc,v(n, v) is v! times the coefficient of xvtn in the Taylor expansion (near t = x = 0) of
ln (E(x, t)),

Nc,v(n, v) = 1

n!

∂v

∂xv

∂n

∂tn
ln (E(x, t)) |x=0,t=0, (8)

where

E(x, t) =
∞∑

v=0

2−v xv

v!
(1 − t)−

1
2 v(v−1)

v∑
s=0

(
v

s

) (
1 − t

1 + t

)s(v−s)

. (9)

From this and equation (7) one sees that the number of classes of n-bond periodic orbits on a
fully connected graph with V vertices is

Nc(n, V ) = 1

n!

V∑
v=1

(
V

v

)
∂v

∂xv

∂n

∂tn
ln(E(x, t))|x=0,t=0. (10)

An explicit expansion of E(x, t) yields

E(x, t) =
∑

n,v=0..∞
En,vt

nxv (11)

with

En,v =
∑

s=0..v
µ=0,...,n

(−1)µ

2vv!

(
v

s

)(
µ + s(v − s) − 1

µ

)(
n − µ +

(
s

2

)
+

(
v−s

2

) − 1

n − µ

)
. (12)

One can also derive the following recursion relation (see appendix B):

Nc,v(n, v) = v!En,v −
∑

m=0..n

∑
k=1..v−1

(v − 1)!

(k − 1)!
Nc,v(m, k)En−m,v−k (13)

which enables a fast numerical calculation of Nc(n, V ).

As an example, consider the case V = n = 4. Substituting these values into equation (10)
one obtains Nc(4, 4) = 21. This result is confirmed in figures 2(a)–(c) which present all the
21 classes of PO’s. Equation (A.1), in appendix A of [5] provides the asymptotic behavior,
for large n, of the number of classes Nc (for any connected graph):

Nc(2n, V ) + Nc(2n + 1, V ) ∼ 2B−V +1nB−1

(B − 1)!

(
1 + O

(
1

n

))
, (14)

where B is the number of bonds. For the complete graph one has B = V (V − 1)/2. By
substituting this value into equation (14) we verified numerically that the asymptotic behavior
of equation (10) for n � V matches equation (14). The results are shown in figure 3 which
presents the ratio (Nc(n, V ) + Nc(n + 1, V ))

/(
N

asymp
c (n, V ) + N

asymp
c (n + 1, V )

)
, for even n.

The superscript asympt stands for the values obtained using equation (14).

4. The mean degeneracy of n-bond periodic orbits on a fully connected graph
with V vertices: numerical results

To obtain the mean degeneracy equation (6), we need also to derive an expression for Np(n, V )

i.e. the number of n-bond PO’s in KV . Let us first calculate the number of n-bond closed
trajectories. The number of n-bond closed trajectories is given by

N(n, V ) = Tr Cn (15)
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Figure 3. Asymptotic behavior of the number of degeneracy classes.

where C is the connectivity matrix defined in equation (5). In our case it is given by

Ci,j (KV ) = 1 − δij , (16)

and its eigenvalues are: λ1 = V − 1, λ2 = λ3 = · · · = λV = −1. From equations (15) and
(16) it therefore follows that

N(n, V ) = (V − 1)n + (V − 1)(−1)n. (17)

N(n, V ) is the number of n-bond PO’s but is different from Np(n, V ) in equation (6) since
in the latter, PO’s that can be obtained from one another through a cyclic permutation are
considered to be the same PO.

For simplicity, let us assume that n is a prime number, thus avoiding the complications
arising from the presence of PO’s which are repetitions of a shorter PO. With this assumption,
each of the PO’s counted in equation (17) is one of n PO’s that can be obtained from one
another by cyclic permutations of the vertices. Since we regard all such cyclicly-equivalent
PO’s to be the same one, Np(n, V ) and N(n, V ) are related by

Np(n, V ) = 1

n
N(n, V ). (18)

From equations (6) and (18) one has

D(n, V ) = (n − 1)!((V − 1)n + (−1)n(V − 1))∑V
v=1

(
V

v

)
∂v

∂xv
∂n

∂tn
ln (E(x, t)) |x=0,t=0

(19)

The mean degeneracy D(n, V ) and its logarithm are shown in figures 4–6. These plots were
generated using either equation (19) or the recursive relation (13). Figure 4 presents the n-
dependence of D(n, V ) for fixed values of V. Figure 5 shows the V -dependence of D(n, V ) for
fixed values of n. As seen from these figures, the mean degeneracy grows rapidly and achieves
values much larger than 2 already for small (i.e., much smaller than the number of bonds)
values of n. On the other hand, in the limit V/n → ∞ it approaches 2 (most classes contain
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Figure 5. The mean degeneracy at fixed PO’s lengths.

only a single PO and its time reversal). Approximating D(n, V ) ≈ N(n,V )/n+N(n,V )/(n+1)

Nc(2n,V )+Nc(2n+1,V )
and

then using the asymptotic expression (14) together with equation (17) one has

D(n, V ) ≈ V (V 2 − V − 1)!2V −1 (V − 1)n

nV (V −1)/2
. (20)

Taking the logarithm of both sides and keeping only terms containing n (assuming log n � V )
one obtains

log(D(n, V )) ≈ n log(V − 1) − 1
2V (V − 1) log n. (21)
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Figure 6. The logarithm of the mean degeneracy at fixed PO’s lengths.

Taking the derivative with respect to V yields the approximate value of V in which the maximal
mean degeneracy is obtained:

Vmax ≈
√

n

log n
. (22)

Although this estimation was derived for large n it shows reasonable agreement with the peaks
in figure 6. For example, the two maxima marked with arrows, for n = 20 and n = 30, are
located in the vicinity of V = 3.9 and V = 4.5 respectively, in agreement with equation (22).
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Appendix A. Derivation of equation (8)

In this appendix we derive equation (8) along the lines of [10].

A.1. Definitions

A graph of order V is a set of V numbered vertices some of which are connected by a bond
(not more than one bond between two vertices, no bond connects a vertex to itself, i.e. no
loops). The number of bonds connected to a vertex is the vertex valency. Figure 7.1 shows a
graph of order 6.
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Figure 7. Graphs and multigraphs.

A multigraph is similar to a graph except that there can be more than one bond between
two vertices (figure 7.2). A graph is a specific case of a multigraph. Let q(i,j)(g) be the
number of bonds connecting the vertices i and j in a multigraph g. We shall refer to q(i,j)(g)

as the degree of the bond (i, j) in g. For example, in figure 7.2 q(2,3) = q(3,2) = 3. Note that
the pairs (i, j) are not-directed, that is, (i, j) and (j, i) are considered as the same bond.

A multigraph is connected if, by moving on the bonds, one can pass between any two of
its vertices (in particular, all valencies are � 1, figure 7.3). A graph, KV , is fully-connected if
each of its V vertices is connected to all other vertices (figure 7.4). Thus, KV has V (V − 1)/2
bonds.

Let g be a multigraph of order v. g is said to be embedded in a graph G if it can be obtained
from G by first adding and deleting bonds between vertices that are connected in G, and then
deleting some of the vertices which have zero valency (now, after the addition and deletion of
the bonds). By this definition, the order of G is larger than or equal to v. If q(i,j)(G) = 1 then
q(i,j)(g) = 0, 1, 2, . . . and if q(i,j)(G) = 0 then q(i,j)(g) = 0. The multigraph in figure 7.5 is
embedded in the graph of figure 7.3 while the multigraph in figure 7.6 is not.

A trajectory is a sequence of vertices, the adjacent pairs of which are connected. If it
is closed, i.e. it starts and ends at the same vertex, the trajectory is a PO. Actually, one can
associate several PO’s with each closed trajectory since one can start in any of the trajectory
points; however, we shall refer to all of these as a single PO that is say for example that
1 → 2 → 4 → 1 is the same PO as 2 → 4 → 1 → 2 and two PO’s are distinct only if
they cannot be obtained from one another by such a cyclic permutation. Thus, the two closed
trajectories in figure 7.7 are the same PO.
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An even multigraph is a multigraph where each vertex has an even valency (figure 7.8).
For any connected even multigraph (often called Euler multigraph) one can always find a
PO that passes on each bond exactly once (Eulerian circuit). Often, there is more than
one. For example, the two PO’s (figure 1(d)) 1 → 2 → 4 → 1 → 5 → 4 → 1 and
1 → 2 → 4 → 1 → 4 → 5 → 1 passes once on each bond in the connected even multigraph
C6 shown in figure 1(b).

A class of n-bond periodic orbits, Cn, in a graph G is an n-bond connected even multigraph
which is embedded in a labeled graph G. Cn, is specified by specifying the set of bond-degrees
{q(i,j)(Cn)}i,j∈G, where

∑
i,jj>i q(i,j)(Cn) = n. A PO is said to be in Cn if it consists of n

steps passing exactly q(i,j)(Cn) times between i and j. By this definition, all PO’s in Cn have
exactly the same length, independently of the choice of bond lengths and therefore, at a given
energy, have the same action. Figure 1(b) shows a class of 6-bond PO’s, C6, embedded in the
fully-connected graph G in figure 1(a). The PO’s in this class are listed in figure 1(c). Two of
them are drawn in figure 1(d).

A.2. Proof of equation (8)

The proof of equation (8) is based on that given in [10] which can also be used to treat the
case of classes of graphs with and without loops, and multigraphs with loops. Consider a set
of n labeled vertices, and the set �(n, v) = {Gn,v} of multigraphs with n bonds that one can
draw on these v vertices (on means using all of them—i.e. these multigraphs are of order v).
To each of the v vertices we assign a sign, +1 or −1. There are 2v such possible assignments.
For a given assignment S, we define the sign of each bond in Gn,v to be the product of signs
of its two vertices. The sign, σ(Gn,v, S), of a multigraph Gn,v ∈ �(n, v) is then defined as
the product of signs of all its bonds. Thus,

σ(Gn,v, S) = (−1)V−(Gn,v,S) = (−1)µ(Gn,v,S) (A.1)

where V− is the sum of valencies of the negative vertices and µ the number of negative bonds.
The sum of the signs of Gn,v for all possible S is

∑
S(−1)V−(Gn,v). Summing this over all

members of �(n, v) one has

∑
Gn,v∈�(n,v)

(∑
S

(−1)V−(Gn,v,S)

)
=

∑
S


 ∑

Gn,v∈�(n,v)

(−1)µ((Gn,v,S))


 . (A.2)

On the right-hand side the order of summation was reversed and equation (A.1) was used.
Consider the left-hand side of equation (A.2). If Gn,v is an even multigraph, then V−(Gn,v, S)

is an even number for any S and therefore
∑

S(−1)V−(Gn,v,S) = 2v. If Gn,v is not even, then
at least one of its vertices, say A, has an odd valency. Since for each assignment S in which
A is negative there exists S ′ which is identical to S except that A is positive in it, and since
σ(Gn,v, S) = −σ(Gn,v, S

′), one has
∑

S(−1)V−(Gn,v,S) = 0 for any Gn,v which is not even.
Thus, the left-hand side of equation (A.2) is the number of even multigraphs in �(n, v) times
2v. To obtain the right-hand side, consider the

(
v

s

)
assignments in which exactly s of the vertices

are positive. The number of ways to put µ identical balls in s(v − s) identical boxes each
of which may contain any number of balls, is

(
µ+s(v−s)−1

µ

)
and therefore this is the number of

ways the µ(Gn,v, S) bonds which join the s positive with the v − s negative vertices can be
placed. The remaining n − µ bonds may be placed between the

(
s

2

)
+

(
v−s

2

)
pairs of vertices

with identical signs, that is in(
n − µ +

(
s

2

)
+

(
v−s

2

) − 1

n − µ

)
(A.3)
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different ways. (To enable compact writing, here and below, we assume that the binomial
coefficients have the properties

(
a

b

) = 0 for b > a and b 
= 0, and
(
a

0

) = 1 for any a.) Summing
over all possible µ(Gn,v, S) one gets the total contribution of all assignments in which exactly
s vertices are positive:

n∑
µ=0

(−1)µ
(

µ + s(v − s) − 1

µ

)(
n − µ +

(
s

2

)
+

(
v−s

2

) − 1

n − µ

)
. (A.4)

This contribution is the coefficient of tn in (1 − t)(−1/2)v(v−1)
(

1−t
1+t

)s(v−s)
. Thus, the number of

n-bond even multigraphs one can draw on v labeled vertices is given by v! times the coefficient
of tnxv in the power expansion of:

E(x, t) =
∞∑

v=0

2−v xv

v!
(1 − t)−

1
2 v(v−1)

v∑
s=0

(
v

s

) (
1 − t

1 + t

)s(v−s)

. (A.5)

We are interested in Nc,v(n, v), i.e. the number n-bond connected even multigraphs one can
draw on v labeled vertices. It is a known result in the graph enumeration theory that the
generating function of the connected set of (labeled) graphs is given by the log of that of the
non-connected set [11]. Thus, Nc,v(n, v), is v! times the coefficient of tnxv in the power
expansion of ln(E(x, t)) which proves equation (8).

Appendix B. Proof of equation (13)

Define the expansions

E(x, t) =
∞∑

v=0

Ev(t)x
v, (B.1)

and

ln(E(x, t)) =
∞∑

v=1

Lv(t)
xv

v!
. (B.2)

Nc,v(n, v) is v! times the coefficient of xvtn in ln(E(x, t)) and therefore

Lv(t) =
∞∑

n=0

Nc,v(n, v)tn. (B.3)

There exists a useful recursion relation between the coefficients in equations (B.1) and (B.2):

Lv(t) = v!Ev(t) −
v−1∑
k=1

(v − 1)!

(k − 1)!
Lk(t)Ev−k(t)v > 1

(B.4)
L1(t) = E1(t).

Expansion of equations (B.2) and (B.3) in powers of t yields equation (13).
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